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Abstract 

In earlier work, we established an axiomatic framework for deriving consistent weight ratios 

from pairwise ratio matrices, using the geometric mean mapping. By adding new axioms, 

this framework is extended to include aggregation rules for combining weights and ratio 

matrices and the weighted-geometric-mean aggregation rule is shown to be consistent with 

this set of axioms. 

In addition, by defining the output of the process as weight ratios (rather than normal-

ized absolute weights) and using multiplicative procedures (the geometric mean and the 

weighted-geometric-mean aggregation rule), rank reversal is avoided. 

Key Words: 

Aggregation Rules, AHP, Rank Reversal, Normalization, Decision Analysis. 
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An Axiomatic Framework for Aggregating Weights and Weight-Ratio 

Matrices 

J. Barzilai and B. Golany 

1 Introduction 

We resolve Belton and Gear's rank reversal problem [4] in the Analytic Hierarchy Process 

(see [10]), by extending the axiomatic framework established in [1] to aggregation rules. It 

follows that rank reversal can be avoided if a multiplicative aggregation rule is used and 

normalized vectors are replaced with weight-ratio matrices. 

Because it appears from Belton and Gear's discussion that the reason for the rank 

reversal phenomenon is improper normalization of the weight vectors, earlier work (e.g. 

Belton and Gear [4], Harker and Vargas [8] and Saaty and Vargas [11,12]) concentrated on 

1. proposing a normalization immune to rank reversal; 

2. proving that previously proposed normalizations are not immune to rank reversal; 

3. legitimizing rank reversals. 

More recently, the exchange [14,6,13,9,7] in the March 1990 issue of Management Science 

is a clear indicator of the importance of resolving this controversy. 

2 The Rank Reversal Problem 

Belton and Gear consider in their Example 1 the three judgement matrices 
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1 1/9 1 / 1 9 9 
\ 

1 8/9 8 

9 1 9 , 1/9 1 1 9/8 1 9 

\ 1 1/9 1 1/9 1 1 1/8 1/9 1 / 

and their corresponding normalized weight vectors 

/  1/11 9/11 8/18 

9/11 1/11 9/18 

\ 1/11 / 1/11 / 1/18 j

These vectors are combined (by taking their arithmetic mean) to produce the overall weight 

vector 

1/11 9/11 
1 1 

w = 9/11 + 5 1/11 
1/11 j 1/11 

p8/18 \ 
1 

+ —3 9/18 

\ -1/18 / 

In Example 2 they introduce an additional alternative, D, with judgement matrices 

1 1/9 1 1/9 
/ 

1 9 9 
\ 

9 
/ 

1 8/9 8 
\ 

8/9 

9 1 9 1 1/9 1 1 1 9/8 1 9 1 

1 1/9 1 1/9 1/9 1 1 1 1/8 1/9 1 1/9 

9 1 9 1 \ 1/9 1 1 1 / \ 9/8 1 9 1 

and corresponding normalized weight vectors 
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(1) 

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 



/ 1/20 
\ 

9/20 

1/20 
7 

/ 
9/12 

\ 

1/12 

1/12 

/ 
8/27 

9/27 

1/27 

\ 9/20. j \ 1/12 / \ 9/27 

yielding the overall weight vector 

t \ 1/20 \ 
9/12 

 / 
8/27 \ 

1 w = — 
3 

9/20 
1/20 

1 
+—

1/12 

1/12 

1 
+ i 

9/27 

1/27 
(2) 

9/20 j \ 1/12 / \ 9/27 

They then observe that WI < w3 but w1 > w2 so that the two sets of rankings are not 

consistent: the rank of A and B is reversed as a result of the inclusion of alternative 

D, even though the pairwise weight ratios associated with alternatives A, B, and C are 

unchanged. 

3 No Normalization Can Prevent Rank Reversal 

By comparing equations (1) and (2), we see that the difference in relative magnitude of 

the components of the overall weight vectors w' and to is due to the normalization factors 

applied to the weight vectors. Explicitly, if the vector y is obtained from the, (positive) 

vector x by the additive normalization yi = xj/ EriLi xi, then any component xi is sensitive 

to changes in any other component s k. Clearly, the same is true when a component is added 

to x. In other words, the essence of normalizing a vector is to adjust its components on 
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the basis of the magnitude of other components. Since this is true for all normalizations, 

it follows that there does not exist any normalization which avoids rank reversal. More 

precisely, for any normalization, there exists a set of vectors exhibiting rank reversal. In 

particular, for the normalization proposed by Belton and Gear in [4] the components of the 

normalized vector are unchanged until a certain threshold is attained, but this normalization 

too, as pointed out by Saaty and Vargas in [12], is subject to rank reversal. 

4 Notation 

The matrices below are n x n, vectors are n-dimensional, and: 

1. A = (aii) is a pairwise multiplicative matrix if 0 < au =

2. III = (Ink) is a multiplicative weight vector if wk > 0 and Flkt=i wk = 1; 

3. C = (C13) is a multiplicative consistent matrix if c 5 = w/w3 for some multiplicative 

weight vector in; 

4. Ax, wx and Cx are the sets of all pairwise multiplicative matrices, multiplicative 

weight vectors and multiplicative consistent matrices, respectively; 

5. p is the set of all mappings from Ax to Cx; 

6. Ax , wx and Cx are groups under componentwise multiplication and Cx is isomorphic 

to wx. 
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5 Representation in Cx 

Note that the weight vectors retrieved from pairwise comparison matrices in the AHP are 

determined only up to a multiplicative factor. These vectors can therefore be represented by 

normalized proxies or, since Cx is isomorphic to le, by matrices of the form (wi/wi). For 

the purpose of studying the problem of retrieving weights from pairwise comparison' matri-

ces, the choice of representation is immaterial (see e.g. [11 or [31). However, it follows from 

the above that these representations are not equivalent as far as aggregating weights and ra-

tio matrices is concerned. More importantly, for Belton and Gear's examples, weight ratios 

are preserved when normalized weight vectors are replaced by weight ratio matrices because 

no extraneous normalization factors are introduced. Indeed, the matrix representation for 

the examples above yields 

\ \ 1 1 1/9 1 \ 1 9 9 1 8/9 8 
1 1 

PrI = i 9 1 9 + 1/9 1 1 +1 9/8 1 9 

1 1/9 1 ,  1/9 1 1 / 1/8 1/9 1 / 

and 

(U) 

1 1 1/9 1 1/9 \ / 1 9 9 9 N 1 1 8/9 8 8/9 N

1 9 1 9 1 1 1/9 1 1 1 4. 1... 9/8 1 9 1 
(2') 

3 3 1 1/9 1 1/9 1/9 1 1 1 1/8 1/9 1 1/9 I 

\ 9 1 9 1 / \ 1/9 1 1 1 / \ 9/8 1 9 1 1

The relative ranking of alternatives A and B is unchanged since the numerical value of 

wi /w2 is preserved — in fact, W is a principal minor of W (that is, W" is obtained by 

deleting certain rows and the same numbered columns of W). 
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6 Axioms for Aggregation Rules 

Let F be an aggregation rule for combining 1 positive weights and n x n matrices. This rule 

is then a mapping from the set of all {A1,. .,Aj; A1, ..,A,} to the set of positive rt x n 

matrices. 

Guided by the examples above and the underlying multiplicative structures, we postulate 

axioms for aggregation rules and prove that the weighted-geometric-mean aggregation rule 

satisfies these axioms and, consequently, is immune to rank reversal. 

Axiom 1. The aggregation rule F satisfies 

F(Ai, ••• ,Ai; P(A1), • • • ,P(At)) = P(F(At, • • • 'At; A1, • • • , At)), 

where the operator P denotes taking a (fixed) principal minor of the appropriate matrices. 

Axiom 2. If the input matrices of F are consistent, so is its output matrix - 

Ak E Cx k = 1,...,1 F(Ai, At; Ai, •• • , At) E Cx

Axiom 3. For some f E r , 

F(Ai, • • • At; 1(A1), • • • , f (Ai)) = f (F(AI, • • • , Ai; Al,. • • , Ad). 

The significance of Axiom 1 is that if P(A) is a principal minor of A, then P(A) and A 

represent the same judgment ratios over the objects they have in common. It follows directly 

from the definition that if F satisfies Axiom 1, the weight ratios of the common objects 
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are identical and therefore not affected by the inclusion of additional objects. Formally: 

Theorem. An aggregation rule satisfying Axiom 1 is not subject to rank reversal. 

Axiom 2 is needed since an arbitrary aggregation rule may produce matrices which are 

neither consistent nor even pairwise multiplicative, as is the case for W* and T/IT in (1') and 

(2') above. That the arithmetic mean destroys this property is not a surprise in view of our 

earlier analysis of the underlying algebraic structure (see Barzilai et at [1,2,3]). 

Axiom 3 means that if the input pairwise multiplicative matrices are converted — using 

the mapping f — to their consistent repreSentative matrices and the resulting multiplicative 

consistent matrices are aggregated using the rule F, the result obtained is the same as when 

the input pairwise multiplicative matrices are first aggregated using the rule F and the 

pairwise multiplicative matrix obtained in this manner is then converted to its ,consistent 

representative matrix using the mapping f. In other words, the final result is independent 

of the order of operation. 

Keeping in mind the underlying multiplicative structures, it is easy to extend the ob-

servations in §5: 

Theorem. The weighted-geometric-mean aggregation rulet 

F(Ai, ..• ,Ai; •.,41) = 
k=.1 

satisfies Axioms 1-3. 

Proof. For objects i and j belonging to the principal minor corresponding to the operator 

tAll operations are carried out componentwise. 
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P, both sides of the equation defining Axiom 1 are given by 

1-1(ati):1; 
k=1 

where (aii)k denotes the ij element of Ak. Therefore, F satisfies Axiom 1. 

. Next, note that for m = 1,...,1, Am E Cx is equivalent to (ati)„,(ajk),,,(akik, = 1. 

This implies 

fi catoniAmfi cap:Y.'m fl cat0A.-, = 1, 
m=1 m=1 m=1 

f8 

so that Ai; is consistent. Hence F satisfies Axiom 2. 

Finally, in conjunction with the geometric mean mapping defined by 

13 nzr., aik . 
aik) 

(

1/n 

the weighted-geometric-mean aggregation rule satisfies Axiom 3 since 

= ei nri(ata n  y m rrn (ii dalk)nm 1/3
Ii. 1/n n i \ . Ant ) • 
=1 firic=i(aik)m k=1 Am=1 kaakinm1

f(A) = = (wij) 

• 

To illustrate the above, the Weighted-geometric-mean produces for the Belton and Gear 

examples the matrices 

1/3 1/3 1/3 
1 1/9 1 1 9 9 1 8/9 8 

U' = 9 1 9 1/9 1 1 

) 

9/8 1 9 (1") 

and 

\1 1/9 1 / \ 1/9 1 1 1/8 1/9 1 / 

/ 1/9 1 1/9 
1/3 

/ 1 9 9 9 \ 
1/3 

/ 1 8/9 8 8/9 \ 1
1/3 

9 1 9 1 1/9 1 1 1 9/8 1 9 1 
U = x x (2") 

1 1/9 1 1/9 1/9 1 1 1 1/8 1/9 F 1/9 

9 1 9 1 / \ 1/9 1 1 1 / \9/8 1 9 1 / 



U" and U are (consistent) pairwise multiplicative and U" is a principal minor of U. Thus, 

the ranking of alternatives A, B and C under Us and U is identical. 

7 Conclusions 

By adding new axioms, the axiomatic framework for deriving consistent weight ratios from 

pairwise ratio matrices developed in [1] has been extended to deal with aggregation rules 

for combining weights and ratio matrices.* While more work needs to be done to further 

extend these results to a general hierarchy, this axiomatic framework has already enabled 

us to resolve the Belton and Gear rank reversal problem. 
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