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Abstract

In Analytic Hierarchy Process, the judgment on a pair of treatments or objects may affect the
judgment on other pair of treatments especially when these two pairs have a treatment in common.
This dependence could be established by using a model developed by Bahadur [1]. In this model, we
test the presence of order effect of presentation within a pair of objects. Any two pairs of alternatives
are tested for the correlation between them. It is also tested whether a certain number of pairs have
the same degree of correlations. Priority vector, defined in terms of the order effect parameters, is
estimated and the hypothesis of equal priority of objects is tested.

Keywords: correlation, dependence, iterative scheme, order effect, priority vector.

1 Introduction

Most of the time judgment on a pair of treatments or objects affect the judgments on other pairs of
treatments, especially when these pairs have a treatment in common. Not much work has been done in
this area, which recognizes the dependence of the judgments on these pairs of treatments. De Jong [7]
estimates the priority vector by the log least squares method, which incorporates this type of dependence.
But the model used by him does not accommodate the order effects or correlation aspects.

We use a model developed by Bahadur [1] to establish the dependence of judgments between pairs of
treatments. Several authors have previously studied within-pair effect (see [2], [3], [4]), and multivariate
comparison experiments (see [5], [6]). In fact, Davidson and Bradley [5] used the model of Bahadur [1]
to allow the dependence of judgments among several criteria. There they assumed that the judgments on
the pairs of alternatives are independent, while those on several criteria for a fixed pair are dependent. In
that paper, an iterative scheme has been given to estimate the priority weights. However, its convergence
to the maximum likelihood estimates is not shown. We feel that it is more worthwhile to recognize the
dependence of the judgments on the different pairs involving a common alternative.

In section 2, we develop the model involving the parameters of order effect of presentations and correlations
between the judgments. Order effects are estimated by the maximum likelihood procedure. We give an
iterative scheme for the solution of the likelihood equations. It is also shown that the proposed iterative
scheme converges to the maximum likelihood estimates. Section 3 deals with the likelihood ratio test
criterion to test whether the order of presentation of the objects to judges plays a significant role. The
important issue of correlation of judgments between different pairs is addressed in section 4. In section
5, the priority vector of the objects is estimated and the equality of these weights is also tested in that
section.
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2 The Model

Let O1, O2, · · · , Om be m objects which are to be compared pairwise with respect to certain qualitative
characteristic by n judges. Consider the vector X = (X12, X13, X14, · · · , Xm−1,m, X21, X31, · · · , Xm,m−1)′,
where,

Xij =
{

1 w.p. θij if the first item in (Oi, Oj) is preferred,
0 w.p. φij = 1− θij if the first item in (Oi, Oj) is not preferred.

Set
Zij =

Xij − θij√
θijφij

(2.1)

and define the correlation coefficient between Zij and Zkl

ρij,kl = E (ZijZkl) , (2.2)

Then, the probability density function of X is given by

p(x) = P (X = x) = p1(x)h(x), (2.3)

where,

p1(x) =
∏
i 6=j

θ
xij

ij φ
1−xij

ij ,

h(x) = 1 +
∑

ij<kl

u(ij, kl) ρij,kl Zij Zkl,

with

u(ij, kl) =

 1 if (i=k or i=l) or (j=k or j=l),

0 otherwise.

Here, ij < kl means that the position of Xij is before the position of Xkl in the vector X. In general,
the above p(x) need not be a probability density function. Bahadur [1] gives a necessary and sufficient
condition for p(x) to be a probability density function. In fact, Bahadur showed that if

λmin = 1− 2
Σβij

, whereβij = max
{
θij

φij
,
φij

θij

}
,

where λmin is the smallest eigenvalue of the correlation matrix R = ((ρij,kl)), then it defines a probability
density function. We assume that (2.3) is a probability density function. Small values of ρij,kls in absolute
values would make (2.3) a probability density function. Observe that,

ZijZkl = δ(Xij , Xkl)
(
φij

θij

)δ(Xij ,1)/2 (
φkl

θkl

)δ(Xkl,1)/2

(2.4)

where, δ(., .) = ±1, sign being positive if the arguments agree and negative otherwise.

Denote the elements of the vector X and corresponding θ and φ by Yi, θi and φi respectively ; i =
1, 2, · · · ,M, where, M = m(m− 1). In the light of these notations, equations (2.1), (2.2), and 2.4 reduce
respectively to
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Zi =
Yi − θi√
θiφi

,

ρij = E (ZiZj) ,

ZiZj = δ(Yi, Yj)
(
φi

θi

)δ(Yi,1)/2 (
φj

θj

)δ(Yj ,1)/2

.

Then (2.3) can be written in terms of Y = (Y1, Y2, · · · , YM )′ as follows.

p(y) = P (Y = y) = p1(y)h(y), (2.5)

where,

p1(y) =
M∏
i=1

θyi

i φ
1−yi

i ,

h(y) = 1 +
∑
i<j

u(i, j) ρij Zi Zj .

Each response consists of a vector of preferences y = (y1, y2, · · · , yM )′, where component yi indicates which
treatment in the ith pair is preferred, yi = 0, 1; i = 1, 2, · · · ,M. Now let n(y) be the number of times the
preference vector y occurs among the n responses. The logarithm of the likelihood function is then given
by

logL =
∑
y

n(y) log p(y),

where p(y) is defined in (2.5) or equivalently,

logL =
M∑
i=1

[si log θi + (n− si) log(1− θi)] +
∑
y

n(y) log h(y), (2.6)

si = Σn(y) yi, i = 1, 2, · · · ,M and the second sum being over all the possible 2M values of y representing
the preference responses. Taking derivative of (2.6) with respect to ρij ; i < j (with u(i, j) = 1), i, j =
1, 2, · · · ,M , and with respect to θi ; i = 1, 2, · · · ,M , we obtain respectively,

∂ logL
∂ρij

=
∑

y

n(y)
h(y)

∂h(y)
∂ρij

,

∂ logL
∂θi

=
si

θi
− n− si

φi
+

∑
y

n(y)
∂h(y)

∂

∂θi
,

where,

∂h(y)
δρij

= u(i, j)∂(yi, yj)
(
φi

θi

)∂(yi,1)/2 (
φj

θj

)∂(yj ,1)/2

; i = 1, 2, · · · ,M,

∂h(y)
∂θi

= − 1
2θiφi

(
φi

θi

)δ(yi,1)/2 ∑
j 6=i

u(i, j)δ(yj , 1)ρij

(
φj

θj

)δ(yj ,1)/2

.
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The maximum likelihood estimates r = {rij ; i, j = 1, 2, · · · ,M} of the correlation parameters ρ = {ρij ; i, j =
1, 2, · · · ,M} and q = {qi; i = 1, 2, · · · ,M} of the preference probabilities θ = {θi, i = 1, 2, · · · ,M} are ob-
tained by solving the following set of likelihood equations (with u(i, j) = 1):

∂ logL
∂ρij

∣∣∣∣
ρ=r,θ=q

= 0; i, j = 1, 2, · · · ,M, (2.7)

δ logL
δθi

∣∣∣∣
ρ=r,θ=q

= 0; i = 1, 2, · · · ,M. (2.8)

In the special case of two treatments (m = 2), the likelihood equations (2.7) and (2.8) can be solved
explicitly to give

qi =
si

n
; i = 1, 2,

r =
n(0, 0)n(1, 1)− n(0, 1)n(1, 0)√

s1s2(n− s1)(n− s2)
.

For m > 2, explicit solutions are not possible and equations are solved iteratively for the maximum
likelihood estimates. We propose the following iterative scheme to obtain solutions to the set of likelihood
equations (2.7) and (2.8). The iterations are indexed by k, k = 1, 2, · · · , since one revised value of each
qi and rij is obtained for each value of k. Successive values of q will be subindexed by t with only one qi
being revised for each value of t. Details for kth iteration follow in two parts.

(I) A new estimate q of θ is generated cyclically through change of one element of θ at a time. The
(t + 1)st stage value q(t+1) is obtained from the tth stage value through replacement of the element q(t)i

only for which t = (k − 1)M + i− 1, t = (k − 1)M, · · · , t = kM − 1. Let

Ci(y) =
∑
j 6=i

u(i, j) δ(yj , 1) rij

(
pj

qj

)δ(yj ,1)/2

,

Bi =
∑

y

n(y)
h(y)

∂h(y)
∂qi

= −
∑

y

n(y)Ci(y)
2h(y) pi qi

(
pi

qi

)δ(yi,1)/2

.

The iterative equation is defined for the two cases as follows.

Case 1: Bi < 0.

q
(t+1)
i =

1 +
pi

qi

4

√
qi(n−Bipi)

si

−1

, (2.9)

where, the right hand side values are tth stage values.

Case 2: Bi > 0.

q
(t+1)
i =

[
1 +

pi

qi
4

√
nqi

si +Bipiqi

]−1

, (2.10)

where, the right hand side values are t-th stage values.

(II) The system of equations ∂ log L
∂rij

∣∣∣
k

= 0; i < j, i = 1, 2, · · · ,M is solved by the IMSL routine ZXMWD,

subject to the condition that the function h(y) be kept positive to give r(k) with each rij ∈ [−1, 1]. Then
r(k) represents the solution to the system of equations for iteration k. Note that ∂2 log L

∂r2
ij

is always negative
indicating that the likelihood is a convex function of rij .
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Here, ∂ log L
∂rij

∣∣∣
k

denotes the value ∂ log L
∂rij

obtained when q(km) is substituted for q. The initial estimate

q
(0)
i is obtained from marginal frequencies si, i = 1, 2, · · · ,M.

We will now show that the solutions from the iterative schemes (2.9) and (2.10) converge to the
maximum likelihood estimates.

Case I. Bi < 0.

In this case, we can shown that φ3
i

θ3
i

Bi is an increasing function of θi (proved in Appendix- Lemma 2).
Now,

∂ logL
∂θi

∣∣∣∣
t

=
φ4

i

θ4i

[
θ3i si

φ5
i

− nθ4i
φ5

i

+
Biθ

4
i

φ4
i

]∣∣∣∣
t

=
φ4

i

θ4i

[
θ3i si

φ5
i

− θ4i
φ4

i

(
ni

φi
−Bi

)]∣∣∣∣
t

=
φ4

i

θ4i

(
n

φi
−Bi

) [(
θ4i
φ4

i

)(t+1)

−
(
θ4i
φ4

i

)(t)
]
, from (2.9),

and since θi

φi
is an increasing function of θi, ∂ log L

∂θi

∣∣∣
t

is of same sign as ∆θi = θ
(t+1)
i − θ

(t)
i . Again,

∂ logL
∂θi

∣∣∣∣
t+1

=
φ4

i

θ4i

(
n

φi
−Bi

) [(
θ3i si/φ

4
i

n−Biφi

)(t+1)

−
(
θ4i
φ4

i

)(t+1)
]

=
φ4

i

θ4i

(
n

φi
−Bi

) [(
θ3i si/φ

4
i

n−Biφi

)(t+1)

−
(
θ3i si/φ

4
i

n−Biφi

)(t)
]

from (2.9), which has the same sign as ∆θi since

θ3i si/φ
4
i

n−Biφi
=

si/φ
2
i

(nφ2
i −Biφ3

i )/θ
3
i

can be seen to be an increasing function of θi.

Now, ∂ log L
∂θi

is monotonically decreasing (proved in Appendix-Lemma 1) in θi so that ∂ log L
∂θi

has same sign

for all values of θi between θ
(t)
i and θ

(t+1)
i . Thus the change in the likelihood ∆ logL = ∆θi

∂ log L
∂θi

∣∣∣
ε
≥ 0

with equality iff ∆θi = 0, where, ∂ log L
∂θi

∣∣∣
ε

denotes ∂ log L
∂θi

at θ(n)
i + εJi∆θi for 0 < ε < 1 and Ji being

the vector whose ith element is 1 and all the other elements are equal to 0. Therefore, it is proved that
likelihood is increased at every step of the iterative scheme if and only if the corresponding parameter
value is changed.

Case II. Bi > 0.

In this case, it is shown that θ3
i Bi

φ3
i

is an increasing function of θi (proved in Appendix-Lemma 3). Now,

∂ logL
∂θi

∣∣∣∣
t

=
φ3

i

θ4i

[
θ3i si

φ4
i

− nθ4i
φ4

i

+
Biθ

4
i

φ3
i

]∣∣∣∣
t

=
nφ3

i

θ4i

[
1
n

(
θ3i si

φ4
i

+
Biθ

4
i

φ3
i

)(t)

−
(
θ4i
φ4

i

)(t)
]

=
nφ3

i

θ4i

[(
θ4i
φ4

i

)(t+1)

−
(
θ4i
φ4

i

)(t)
]
, from (2.10),
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which has the same sign as that of ∆θi = θ
(t+1)
i − θ

(t)
i since θi/φi is an increasing function of θi. Next,

∂ logL
∂θi

∣∣∣∣
t+1

=
φ3

i

θ4i

[(
θ3i si

φ4
i

+
Biθ

4
i

φ3
i

)(t+1)

− n

(
θ4i
φ4

i

)(t+1)
]

=
φ3

i

θ4i

[(
θ3i si

φ4
i

+
Biθ

4
i

φ3
i

)(t+1)

−
(
θ3i si

φ4
i

+
Biθ

4
i

φ3
i

)(t)
]
,

which has the same sign as ∆θi since θ3
i si

φ4
i

+ Biθ
4
i

φ3
i

is an increasing function of θi. Again, since θi
∂ log L

∂θi
is

monotone decreasing in θi so the result follows as in the case I.

3 Testing Order Effects

It is important to test whether the probability of choosing object Oi in the ordered pair (Oi, Oj) is same as
the probability of choosing Oi in the ordered pair (Oj , Oi) for all (Oi, Oj) or not. Thus, the null hypothesis
of interest could be formulated as follows.

H1
0 : θij = 1− θji ∀i, j; i 6= j,

(or, equivalently θi = 1− θK+i, i = 1, 2, · · · ,K, where, K = m(m− 1)/2).

Under H1
0 , p(y) in (2.5) reduces to

p0(y) = p01(y)h0(y),

where,

p01(y) =
K∏

i=1

θ
(1+yi−yK+i)
i φ

(1−yi+yK+i)
i .

Under H1
0 , the log-likelihood function L01(y) is then given by

K∑
i=1

(n+ si − sK+i) log θi + (n− si + sK+i) log(1− θi) +
∑

y

n(y) log h1
0(y),

where,

h1
0(y) = 1 +

∑
i<j

u(i, j) δ(yi, yj)ψ
δ(yi,1)/2
i ψ

δ(yj ,1)/2
j

ψi =

 φi/θi if i = 1, 2, · · · ,K,

θj/φj if i = K + 1,K + 2, · · · ,M ; j = i−K.

The maximum likelihood estimates rij of ρij ; i < j; i, j = 1, 2, · · · ,M and qi of θi; i = 1, 2, · · · ,K, under
the null hypothesis H1

0 are obtained by solving the following equations.

∑
y

n(y)
h1

0(y)
∂h1

0(y)
∂rij

= 0; i, j = 1, 2, · · · ,M, i < j, (3.1)

n+ si − sK+i

qi
− n− si + sK+i

pi
+

∑
y

n(y)
h1

0(y)
∂h1

0(y)
∂qi

= 0; i = 1, 2, · · · ,K, (3.2)
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where,

∂h1
0(y)
∂rij

= u(i, j)δ(yi, yj)ψ
δ(yi,1)/2
i psi

δ(yj ,1)/2
j ,

∂h1
0(y)
∂qi

= − 1
2piqi

(
pi

qi

)δ(yi,1)/2 ∑
j,k 6=i

u(i, j)rijδ(yj , 1)
(
pj

qj

)δ(yi,1)/2

−ri,k+1 [δ(yi, 1)− δ(yk+i, 1)]
(
pi

qi

)(δ(yi,1)−δ(yk+i,1))/2

−
(
pi

qi

)δ(yk+i,1)/2 ∑
j 6=i

u(k + i, j)rk+i,jδ(yj , 1)
(
pj

qj

)δ(yj ,1)/2
 .

Using the similar iterative schemes and similar arguments to show convergence of the iterative schemes to
the solutions of (3.1) and (3.2) we get the maximum likelihood estimates of the parameters under the null
hypothesis H1

0 .

Let r and q be the maximum likelihood estimates under model and r(01) and q(01) be maximum likelihood
estimates of ρ and θ under H1

0 . Then, the likelihood ratio criterion is given by:

λ1 =
L01

(
y|r(01), q(01)

)
L (y|r, q)

. (3.3)

The hypothesis H1
0 is rejected if λ1 in (3.3) is small or equivalently, −2 log λ1 is large. Under H1

0 , −2 log λ1

is distributed asymptotically as χ2 with K df.

4 Correlation of Judgments on Different Pairs

One may be interested in knowing whether the judgment on the pair (Oi1 , Oj1) is uncorrelated with the
judgment on the pair (Ok1 , Ol1). We can test the hypothesis:

H2
0 : ρ(i1,j1),(k1,l1) = 0 for some (i1, j1), (k1, l1).

Under the null hypothesis H2
0 , logL in (2.6) reduces to:

logL02 =
M∑
i=1

[si log θi + (n− si) log(1− θi)] +
∑

y

n(y) log h2
0(y),

where,
h2

0(y) = 1 +
∑
i<j

∗ u(i, j)ρijZiZj ,∑∗ denoting the summation over other indices except the particular (i1, j1), (k1, l1). We get similar sets of
likelihood equations. Using the same type of iterative schemes, we find the maximum likelihood estimates
of parameters under hypothesis H2

0 .

Let r(02) and q(02) be maximum likelihood estimates of ρ and θ under H2
0 . Then, the likelihood ratio

criterion is given by:

λ2 =
L02

(
y|r(02), q(02)

)
L (y|r, q)

. (4.1)
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The hypothesis H2
0 is rejected if λ2 in (4.1) is small or equivalently, −2 log λ2 is large. Under H2

0 ,−2 log λ2

is distributed asymptotically as χ2 with 1 df.

Sometimes, we may think that the correlations of certain number of pairs of treatments are same. More
specifically, we may suspect that correlation between the pair (Oi1 , Oj1) and the pair (Oi2 , Oj2) is same
as the correlation between (Oi1 , Oj1) and the pair (Oi3 , Oj3) and so on up to the correlation between
(Oi1 , Oj1) and (Oik

, Ojk
). We may test the following null hypothesis:

H3
0 : ρ(i1,j1),(i2,j2) = ρ(i1,j1),(i3,j3) = · · · = ρ(i1,j1),(ik,jk) = ρ0, say.

The logL in (2.6), under the hypothesis H3
0 , reduces to:

logL03 =
M∑
i=1

[si log θi + (n− si) log(1− θi)] +
∑

y

n(y) log h3
0(y),

where,

h3
0(y) = 1 +

∑
i<j

∗∗ u(i, j) ρij Zi Zj + ρ0

k∑
l=1

u(i1, j1)Zil
Zjl

,

∑∗∗ denoting the summation over other indices except the (i1, j1), (i2, j2); (i1, j1), (i3, j3); · · · ; (i1, j1),
(ik, jk). Then the maximum likelihood estimates of ρ0 and θis respectively are obtained from the following
sets of equations: ∑

y

n(y)
h3

0(y)
∂h3

0(y)
∂ρ0

= 0,

si − nqi
qipi

−
∑

y

n(y)
h3

0(y)
∂h3

0(y)
∂qi

= 0; i = 1, 2, · · · ,M,

1
2qipi

(
qi
pi

)δ(yi,1)/2

u(i, j)δ(yj , 1)
(
qj
pj

)δ(yj ,1)

= mij , pi = 1− qi,

where,

∂h3
0(y)
∂ρ0

=
k∑

l=1

u(il, jl)Zil
Zjl

,

∂h3
0(y)
∂θi

=
∑
j 6=i

mijr
∗
ij ,

r∗ij =
{
rij if (i, j) 6= (i1, j1), (i2, j2); (i1, j1), (i3, j3); (i1, j1), (ik, jk),
ρ0 otherwise.

along with (3.2) for other estimates rijs of ρijs.

Let r(03) and q(03) be maximum likelihood estimates of ρ and θ under H3
0 . Then, the likelihood ratio

criterion is given by:

λ3 =
L(03)(y|r(03),q(03))

L(y|r,q)
. (4.2)

The hypothesis H3
0 is rejected if λ3 in (4.2) is small or equivalently, −2 log λ3 is large. Under H3

0 ,−2 log λ3

is distributed asymptotically as χ2 with k − 1 df.
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5 Estimation and Test for Equality of Priority Vectors

The estimates of priority vector π = (π1, π2, · · · , πm)′ of the alternatives may be found as follows. Define,

µi =
∑
j 6=i

θij + 1− θji

2
,

πi =
µi∑m

j=1 µj
; i = 1, 2, · · · ,m.

The maximum likelihood estimates mi of µi and pi of πi are given (with qijs as estimates of θijss) respec-
tively by:

mi =
∑
j 6=i

qij + 1− qji

2
,

pi =
mi∑m

j=1mj
.

The hypothesis of equal priority of the alternatives is:

H4
0 : π1 = π2 = · · · = πm.

Under H4
0 , the number of parameters θijs is reduced by m− 1. Under H4

0 , estimates qijs of θijs are given
by:

q1i = qi1 +

∑
j 6=1,i(qij + 1− qji)−

∑
j 6=1,i(q1j + 1− qj1)

2
; i = 1, 2, · · · ,m.

The estimates of the other θijs are obtained by (2.7) and (2.8). The hypothesis H4
0 is rejected if −2 log λ4

is large where, λ4 is the corresponding likelihood ratio statistic. Under H4
0 ,−2 log λ4 is distributed asymp-

totically as χ2 with m− 1 df.

6 Discussion

In this paper we have generalized the idea of dependence of judgments for Analytic Hierarchy Process.
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Appendix

Lemma 1. θi
∂ log L

∂θi
is monotone decreasing in θi except for very small values of θi.

Proof. We will show that ∂ log L
∂θi

+ θi
∂2 log L

∂θ2
i

is negative.

∂ logL
∂θi

=
si

θi
− n− si

1− θi
+

∑
y

n(y)h′(y)
h(y)

,

and
∂2 logL
∂θ2i

= − si

θ2i
− n− si

(1− θi)2
+

∑
y

n(y)h′′(y)
h(y)

−
∑

y

n(y){h′(y)}2

{h(y)}2
,

where,

h′(y) = − 1
2φiθi

(
φi

θi

)δ(yi,1)/2

Ci,

h′′(y) =
δ(yi, 1) + 2− 4θi

4θ2i φ
2
i

(
φi

θi

)δ(yi,1)/2

Ci,

Ci =
∑
j 6=i

u(i, j)δ(yj , 1)ρij

(
φj

θj

)δ(yj ,1)/2

.

Then
∂ log L

∂θi
+ ∂2 log L

∂θ2
i

=
∑ n(y)

h(y)
Ci

4θiφ2
i

(
φi

θi

)δ(yi,1)/2[
δ(yi, 1)− 2θi

Ci

h(y)

(
φi

θi

)δ(yi,1)/2

− h(y)
Ci

(
θi

φi

)
4θi

(
1− si

n

)]
,

which is seen to be negative in all the cases. Hence it is proved that

∂ logL
∂θi

+
∂2 logL
∂θ2i

< 0.

Lemma 2. φ3
i

θ3
i

∑
y

n(y)h′(y)
h(y) is an increasing function of θi if Bi is negative.

Proof. φ3
i

θ3
i

∑
y

n(y)h′(y)
h(y) =

∑
n(y)

[
φi

θih(y)

] [
φ2

i h′(y)

θ2
i

]
.

φi

θih(y)
=

 θi

φi
+

∑
i<j

δ(yi, yj)ρij

(
φi

θi

)δ(yj ,1)/2
−1

φ2
ih

′(y)
θ2i

=
1

2φiθi
+

(
φi

θi

)2+δ(yj ,1)/2

Ci.

The derivative of φ3
i

θ3
i

∑
y

n(y)h′(y)
h(y) is given by:
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∑
n(y)

[
φi

θih(y)

] [
δ(yi, 1)/2 + 3− 2θi

2θ2i φ
2
i

](
φi

θi

)δ(yi,1)/2

Ci

−
∑

n(y)
φ3

i

θ3i

[
h′(y)
h(y)

]2

+
∑

n(y)
φ2

i

θ4i

h′(y)
h(y)

. (6.1)

Now, δ(yi, 1)/2+3−2θi is always positive indicating that the first term in the above expression is positive.
Combining the second and the third terms we then get,

∑
n(y)

φ2
i

θ4i

h′(y)
h(y)

[
1− θi φi

h′(y)
h′′(y)

]
,

which is always positive since θi φi
h′(y)
h(y) < 1.

Hence, the sign of (6.1) is always positive. This proves the Lemma 2.

Lemma 3. θ3
i

φ3
i

∑
y

n(y) h′(y)
h(y) is an increasing function of θi if Bi is positive.

Proof. θ3
i

φ3
i

∑
y

n(y)h′(y)
h(y) =

∑
n(y)

[
θi

φih(y)

] [
θ2

i h′(y)

φ2
i

]
.

θi

φih(y)
=

φi

θi
+

∑
i<j

δ(yi, yj) ρij

(
φi

θi

)1+δ(yj ,1)/2
−1

θ2i h
′(y)
φ2

i

=
1

2φiθi
+

(
φi

θi

)δ(yj ,1)/2−2

Ci.

The derivative of θ3
i

φ3
i

∑
y

n(y)h′(y)
h(y) is given by:

∑
n(y)

[
θi

φih(y)

] [
δ(yi, 1)/2− 1− 2θi

2θ2i φ
2
i

](
φi

θi

)δ(yi,1)/2

Ci

−
∑

n(y)
θ3i
φ3

i

[
h′(y)
h(y)

]2

+
∑

n(y)
θ2i
φ4

i

h′(y)
h(y)

. (6.2)

Now, δ(yi, 1)/2 − 1 − 2θi is always positive indicating that the first term in the above expression is
positive. Combining the second and the third terms we then get,

∑
n(y)

θ2i
φ4

i

h′(y)
h(y)

[
1− θi φi

h′(y)
h′′(y)

]
,

which is always positive since θiφi
h′(y)
h(y) < 1.

Hence, the sign of (6.2) is always positive. This proves the Lemma 3.
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