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ABSTRACT 

 
Artificial neuron networks base their processing capabilities in a parallel architecture. This makes them 
useful to solve pattern recognition, system identification and control problems. In this paper is described 
an artificial neuron implementation on a FPGA device by using a custom sfloat24 math library. Using this 
library have been implemented some activation functions of an artificial neuron. In particular this work 
discusses the analytical formulation of a sigmoid activation function and the consequent implementation 
on a FPGA device, using the custom built sfloat24 math library.  
The simulation results show that the sfloat24 floating point math library and the implementation of an 
artificial neuron network are feasible, and their outperform by high-speed response. 
 
Keywords: Artificial Neuron Networks (ANN), Field Programmable Gate Array (FPGA). 
 

 

1.  Introduction 
Artificial Neuron Networks (ANN) are used with success in pattern recognition problems, function 
approximation, control, etc. Their processing capabilities are based on a parallel architecture. There are 
different kind of electronic implementation of ANN, digital, analog and hybrid (M.A. Banuelos, j. 
Castillo Hernandez, S. Quintana Thierry, R. Damian Zamacoma, J. Valeriano Assem, R.E. Cervantes, R. 
Fuentes Conzalez, G. Calva Olmos, J.L. Perez Silva, 2003) and each one has specific advantage and 
disadvantages depending on the type and configuration of the network, training method and application.  
For a digital implementation of ANN there are d ifferent alternatives, custom design, digital signal processors, 

programmable logic, etc. Programmable logic offers low cost, powerful software tools and true parallel 

implementations. Field Programmable Gate Arrays (FPGA s) consist in a family of a programmable logic devices 

based in an array of configurable logic blocks, which gives a great flexib ility in the development of digital systems. 

The amount of their available resources for digital system design gives a great flexib ility for implementing complex 

systems, such as a specific purpose microprocessor, network controllers, digital video systems, and for 

implementing digital ANNs. (Bogdan M. Wilamonwski, 2009).  
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In this paper the authors present the design of an artificial neuron on the ALTERA
®
 Cyclone III 

EP3C25F324C8 FPGA evaluation board. In general a neuron comprises an input aggregation stage and an 
output activation function one. 
The input stage of implemented neuron is based on a sfloat24 adder. Fundamentally three types of 
activation functions have been used: step, ramp-saturation, and sigmoid. For implementing the sigmoid 
activation function the well known CORDIC (Ray Andraka, 1998) theory is used. The obtained results 
will be used, as a starting point, for the generation of complex ANN for application requiring parallel 
computing. 
The authors was developed a floating point math library for FPGAs, called sfloat24 (M.C. Miglionico, F. 
Parillo, 2010), which is used in this paper for the Artificial Neuron implementation. Respect to the 
classical IEEE 754 (IEEE Standard for Binary Floating-Point Arithmetic, 1985) (W. Kahan, 1996)  
floating point number format, the numbers are represented by 24 bit word length. This reduced 
representation is useful when a small FPGA is used. 
The implementation of the Artificial Neuron has been based on the definition of the basic arithmetic 
operations and of the comparison operator (C. Attaianese, F. Parillo, G. Tomasso, 2010), successively  
applying the CORDIC theory in order to define the exponential function.  
 

 

2.  Modelling of an Artificial Neuron 

A generic neuron, as well known, consist of several weighted inputs, an adder function and an activation 
function as shown in Figure 1.  
 

 
 

 
 

 
 
 

 
 

 
 

Figure 1. Block diagram of an artificial neuron. 
 

where y(t) is the output of the neuron. W is the input vector, xi(t), [0; ]i n  are the inputs and f is a non 

linear activation function. This neuron model correspond to the following generalization: 
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where: x0 is equal to -1 and w0=b, where b is a bias and/or a threshold. 
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The simplest activation function is the step activation function, defined as follow: 
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where a, see Figure 1, is the sum of all input signal and  is a threshold level. 
Another used activation function is the ramp saturation activation function that produces an output 
gradually growing from zero to a fixed maximum level. This function can be expressed as: 
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where   is the saturation level. 
The back-propagation (BP) learning process is widely adopted as a successful learning rule to find the 
appropriate values of the weights for ANNs. For example the Multi-Layer networks consists of  various 
layers: an input and output ones between which lie one or several hidden ones whose outputs are not 
observable. These layers are based upon some processing unit (neurons) interconnected by means of feed-
forward pondered links as depicted in Figure 2. (Mellit, S. Shaari, H. Mekki, N. Khorissi, 2008). The BP 
learning process requires that the activation function is derivable. An example of a derivable function is 
the sigmoid.  

 
 

Figure 2. Schematic diagram of a multi-layer feed-forward neural network. 
 

A sigmoid function has the following expression: 
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This function has been implemented by means the developed custom sfloat24 math library and using the 
CORDIC theory for the implementation of the exponential function.  
Various methods exist to implement a trigonometric/hyperbolic math function. These include Taylor 
series; various curve fitting algorithms and the CORDIC (COordinate Rotation DIgital Computer) 
algorithm. The CORDIC algorithm often offers the most elegant solution to the problem, and it is 
astounding in its simplicity of implementation, efficiency and elegance (Samuel Ginsberg, 2002). 
The CORDIC algorithm provides an iterative method of performing vector rotations by arbitrary angles 
using only shift and adds. Usually the CORDIC theory is used to implement trigonometr ic functions. The 
implementation of the Sine and Cosine functions is quite immediate. 
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Applying this theory and assuming 12 step system, this yields 12 bits of accuracy in the final answer. 

Note that the Konst Cos  , constant for a 12 step algorithm, is given by: 
 

11

0
cos 0.6075ii

K


    

where:  
1tan (2 )i

i
    

 

At begin, off line stage, has been built up two small look up tables, in this case with a length of 12 

elements, in the one is stored the angles in power of 2, starting from [0]
4


  , and in the other the 

reciprocal of the power of 2. The second look up table is useful to avoid the divide by 2 operation during 
the execution of the algorithm (real time stage). 
The first look up table is denoted fract_teta[12], where the stored angles are in radiants, and the second 
reciprocal_pow2[12]. In the following is depicted a fragment of C/C++ code to implement the sine and 
cosine functions. 
 
Initialisation: 

Set  , „teta_rad’ is the input angle, expressed in radians; 
set y=0; 
set x=Konst=0.60725;  

 
Computation: 

y=0.0; 
dx=0.0;dy=0.0; 
 
for(i=0;i<12;i++) 
{ 
  dx=x*reciprocal_pow2[i]; 
  dy=y*reciprocal_pow2[i]; 
  dteta_rad=fract_teta[i]; 
  if(teta_rad>=0) d=-1.0; else d=1.0; 
  x=x+d*dy; 
  y=y-d*dx; 
  teta_rad=teta_rad+d*dteta_rad; 
} 
 

The trigonometric functions of the desired angle are present in the x and y variable. In this 

implementation is assumed 
2 2

 
     in order to extend the computation for any value of   it is 

sufficient to add few instructions, as well known in the literature. 
In the case of the implementation of the hyperbolic function the expressions, using always the CORDIC 
theory, can be written as follow: 
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where 1id    if 0i  , +1 otherwise, the integer i varies as described below.  
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The hyperbolic functions, considering the expressions (5) and (6), can be implemented in similar manner 
as the sine and cosine functions. In fact, the following code is quite similar: 
 
Initialisation: 

Set  , „teta_rad’ is an input variable; 
set y=0; 
set x=Konst=7.5495e+011;  

 
Computation: 

y=0.0; 
dx=0.0;dy=0.0; 
for(i=0;i<24;i++) 
{ 
  dx=x*reciprocal_pow2[i]; 
  dy=y*reciprocal_pow2[i]; 
  dteta_rad=fract_teta[i]; 
  if(teta_rad>=0) d=-1.0; else d=1.0; 
  x=x+d*dy; 
  y=y+d*dx; 
  teta_rad=teta_rad-d*dteta_rad; 
} 
 
reciprocal_pow2[i] is given by: 
 

13 12 11 10 9 8 7 6 5 4 3 2

1 2 3 4 5 6 7 8 9 10 11 12

/ *[1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,1 2 ,

2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ,2 ]* /

           

           

           
 

 

and fract_teta[i] is given by the inverse hyperbolic tangent of the above commented values. 
The hyperbolic functions are present in the x and y variables. In this case the steps are 24 because the 
input variable can assume any value, the hyperbolic are not circular math functions. 
At last the exponential functions can be easily derived from the hyperbolic functions as following: 
 

sinh( ) cosh( )xe      (sinh( ) cosh( ))xe       

 

 

3.  FPGA Implementation – Simulation results – 

It is possible, on the basis of expressions (5),(6) and (7), to build the sigmoid function. The code of the 
hyperbolic functions has been written in VHDL code, similar at above depicted C code. 
The code has been implemented using the ALTERA

®
 Quartus II 9.1 software. The sfloat24 sigmoid 

activation function occupies only 44% of total logic elements of the used Cyclone
®
 III EP3C25F324C8 

device and  occupying under 1% of the dedicated logic registers. 
In the following is shown the obtained sigmoid function compared to the same function built with 
Simulink

®
 blocks. It is important to underline that the Matlab

®
 operates with double precision floating (64 

bit) point numbers. The simulations have been performed using the ALTERA
®
 DSP Builder tool, in 

particular using the HDL import block, as depicted in Figure 3. 
Figure 4 shows the simulation results when the sampling time Ts has been fixed to a 2.56 µS, in this case 
the output error varies in the range ±0.006 about. Other simulations have been performed with different 
sampling times. In all the tests results that the entire system has a latency time at maximum of 6 clock 
cycles. Improvement of the overall performances could be reached by using a sample time less than 2.56 
µS.  For a common industrial application the used sample time produces good results.  

(7) 
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Figure 3. Hyperbolic and Sigmoid functions Simulink

®
 simulat ion layout. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Simulat ion results – (a) Sigmoid activation function and (b) the absolute error between Sigmoid generated 
by the sfloat24 math library and one generated by Simulink

®
 math function block. 

 

The system presents a stable performance comparing to the any external disturbance. In fact, FPGAS offer 
the stability of a typical digital implementation on a standard microprocessor and performances 
comparable to an analog implementation. Two additional routines allow to test the implemented ANN  
performances. The first routine converts a given floating point number in to sfloat24 number layout 
format. The second one converts a sfloat24 number to a double precision floating number. 
These routine, due to their complexity, have been written in C/C++ language and implemented as S-
Function as depicted in (M.C. Miglionico, F. Parillo, 2010). 
 

 

4.  Conclusions 

The obtained results show the validity and the feasibility of implementing a Sigmoid activation function 
using either the custom sfloat24 math library and the CORDIC theory. On the used FPGA device is 
possible only to implement a single artificial neuron.  These results show that it is possible implement a 
full Artificial Neural Network similar the one shown in Figure 2. In this case a ALTERA

®
 Stratix FPGA 

is required. The authors are working on an optimized version of the proposed algorithm, in order to 
reduce the area device occupation, in terms of logic elements, on any used FPGA. Furthermore, the speed 
or execution or latency of the ANN can be precisely controlled with the amount of reuse of sfloat24 
arithmetic elements.  
Since on the more advanced families of FPGAs it is possible to implement a network with an interesting 
number of neurons working in parallel using only a single chip.  
The implemented sigmoid module is highly accurate and can easily be reconfigured for any sigmoid slope 
and any desired error tolerance. 
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