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Abstract 

The Graded Eigenvector Method (GEM) uses the upper triangular part of the 
matrix of judgments A to derive the priorities of the alternatives. Here we 
study the principles of rank preservation of GEM under a single criterion when 
new elements are added. 

1. Introduction 

0 

Yu [1] and Wang [2] use the matrices N and M given by: 

_ 
l/n am --- am a1  _ 

1/(n-1) au

. --. ,N4= ; N = 

I / 2 al n-I 

1 

to derive the priorities of alternatives. In this paper, we use 

the upper trianguilar matrix M to study the principles of rank 

preservation under a single criterion when new elements are added 

to the set of alternatives being compated.. 

Definition (Strong Rank Preservation): Given an nxn matrix of 

judgments A = (au). The rank of the alternatives is strongly 

preserved if a new element is added to the set and the new 

resulting (n+1 x n+1) matrix of paired comparisons B satisfies: 

bu = au for i,j =

b101.0 / b3 1 = a1m.0 / ai,11.1 for all i and j. 

Definition (Weak Rank Preservation): Given an nxn matrix of 

judgments A = (au). The rank of the alternatives, is weakly 
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preserved if a new element is added to the set and the new 

resulting (n+1 x n+1) matrix B satisfies: 

bn = au for i,j = 1,2,...,n 

2. Strong Rank Preservation 

Theorem 2.1(3] Let the judgments of the upper triangular matrix A 

of order n be consistent. Let Amax (A) = n and W =

be the principal eigenvalue and eihenvector of A, respectively. 

Let A be the upper triangular matrix of order (n+1) given by: 

8 1 n+1 1 an 

A• = 
A 

0 
an n+1

n + I _ 

, where A= 
2 -- In 

n _ 

+ 
Let Amax (A) and W = (W 11 W 2, W m„.1 ) be the principal 

eigenvalue and eigenvector of A*, respectively. When a new element 

is added, a necessary and sufficient condition for strong rank 

preservation is that ai n+1 = cwi, (c>0), (i=1,2,...,n) for the 

judgment matrix A. 

Proof: Let us prove the sufficient principle. Suppose that.aimti

cwi, (c>0), (i=1,2,...,n). Let 

Amx(A) = A, Am (A) 

From the eigenvalue problem: 

A W = (A + 

we obtain: 

and we have 
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= A+AA, W = W; • • • T

A W + (a al ' a 2 c",8 )T W (A + a ,A)W • n n+1 n n+1 n+1 (n + 1)W : 4. = + a,,t)W 

(1) 
o 



0 

W 11,1 = AX/c, c>0. (4) 

Substituting (4) into (2) we have: 

AVV •t +(CWI,CW2,---,CWD)T I/C)= (A + a„I)W ( 5) 

From (3) we have AX = 1, Jhus.W. --(WrW 2,---,W.,1/C)T.(c>0). Q.E.D. 

Let us now prove the necessary condition. Suppose that after 

adding a new element, the judgment matrix A* is strong rank 

preserving, and the corresponding principal eigenvalue and 

eigenvector are given by Anwm(A*) and 
- ni.t* ra* wit T 
W = "I i••'I nnl n+1 )

respectively. Similarly, assign A (A) = A, Imax(A*) = X+AX. From 

the eigenvalue problem (1) we have: 

AW • +( %Tim' m Ant -Pd s (6) -a: ...va2.+1,•••0a. n+11 n o+) ÷"...•#'' 
(n+ 1)W:+ —(2+ Al)W:+1 (7) 

and hence we have 14*n+1 = AA/c, c>0. (8) 

Substituting (8) into (6) we obtain: 

AVV.4-(a1a 3,a2„11.",a„...)
T
(a2/C)—(2+ZSA)W (9) 

- . 
AVV • —ay' + AADAI — (a l ...I / C,a 3 a+, / C,•Tha n . +1 / Cir]. 0 (10) or 

Evidently, w ' (al rro/c, • • • , an rro/c) T isatisfies (10). Since A s 

a strong rank preserving, we have 

and the result follows. 

a1n+1 =cW (1=12---n)(c>0). 

Corollary 1. Let the judgments of the upper triangular matrix A of 

order n be consistent. Let X (A) = n and W = (W1,W2,...,Wn)T be 

the principal eigenvalue and eihenvector of A, respectively. 

Suppose that 

A*: 

A 

T 
W = (W1/.../ Wn) = (W1, Wn)T,

Q.E.D. 

the upper triangular matrix of order n+2 is given by 

a; ft+i a l 11+2 

A 

%. a a n n+ I n n+2 

•0 n + 3n+! n+2 

n + 2 _ 

,whereA = 
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Amax(A) and W = (W 1,W 2, , witrol)T are the principal eigenvalue 

and eigenvector of A*, respectively. If two new elements are 

added, the the necessary and sufficient condition for strong rank 

preservation is given by: 

CIW I(CI >0)1(i 
,for the judgement matrix A. 

al n+2 C2 W 1(C 2 > 0),0 

Proof: (Sufficiency) Let 

1,u(A) = A, A (A) = W = (W1 1 • • • WTI) • 

From the eigenvalue problwm (1) we have: 

— • T • 
AW +(a1A+1,a2n. 1,-",an „i) Wn+1 (a l ni1 ,a 2 n+2•Tha n n+2)  " n+2 = 

+ AA)W 
. . 

(n + OW:+1 + a „ A. 2W =n +2 max )W A.1
(n + 2)W A.. 2 = ma (A )W:+2 = GZ a„OW n+2 

and hence we have: 

= aid& C AC > 0),W:+2 = a,A/ C23(C2 > 0) 

(12) 

(13) 

(14) 

substituting (14) into (11) we have: 

AVV.+(CI VVIXIVVv—XIVVid T(AA/C1)+(C2VVI,C2VVv.-X2VV)T(LA/C2) 

--(A+LA)W (15) 
.„ 

Evidently, W = 2W is a solution that satisfies (15). Thus, A* is 

strong rank preserving. On the other hand, from (13) we have AA=2. 

Thus, we have: 

VV. = (2W1,2W2,--,2w2/ C1,2/ C)T,(C 1 > 0),(C >W. O.E.D. 

(Necessity) Suppose that after adding two new elements, the 

judgment matrix A* is strong rank preserving, and the principal 

eigenvalue and eigenvector of A are given by Am, (A) and W = 

(W 1,W 2, W
'11
1+1 )

T
, respectively. Similarly, assign Amax(A) = A, 

and Amax(A) = A+AA. From (1), (11)-(15) we have: 
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AW• =AW• 
÷ANW*-[(alnti/c3,a2n.i/co-Than n+1 /c 1

)T 

+(a 

Evidently, 

1 n+2 c2,a 2 n+2 /C 2 ,•••,a n n+2 C 2 ))) 

1 W = (a1 1/c1 / 4(alw,2/C2,...,ann+2/C2)
T 

satisfies (16). Since A* is strong rank preserving,we have: 

=-(W:,W;,--,W;)T =(2Wir2W2,•-,2WA)T

Comparing (16) and (17), we obtain: 

= ciWi (i=1,2,...,n), cl > 0 

ai nt2 = C 2W 1 (i=1,2,...,n), c2 > 0 

(16) 

(17) 

Q.E.D. 

The result of Corollary 1 can be easily extended to the case 

in which in new alternatives are added to the set. 

corollary 2. Let the judgments of the upper triangular matrix A of 

order n be consistent. Let Anm (A) = n and W = w, • • - wn) T be 

the principal eigenvalue and eihenvector of A, respectively. 

Suppose that the upper triangular matrix of order n+m is given by 

A*: 

A • = 

a 
1n+1 

a 
1n+2 a 

n+m 

A 

a a n n+1 n n+2 a n n+rn 

n + I a 
n+1 n+2 ••• a  n+ 1 n+en 

0 n m _ 

,where A = 

1 a l2 ••• a In 

2 

0 
n 
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Amax (A) and W = (W 1,W 2, , W mo, W (1.2, Wieroln )T are the 

principal eigenvalue and eigenvector of A*, respectively. If m new 

-elements are added, the necessary and sufficient condition for 

strong rank preservation is given by: 

ain+1 =C1W i(C1 > 0)(i =1,2,---,n) 

ain+2 = C2W i(C 1 > 

a i n+.= C, W i(C. >0)0 = 1,2,—,n) for the judgement matrix A 

3. Weak Rank Preservation 

Lemma. For a matrix of incomplete judgments the priorities of the 

alternatives obtained using GEM [2] are given by: 

W. = [1 /(n — a i,W,),(i= n— 1,n — 2,—;1) (18) 

Theorem 3.1 [3] Let A = (a1 ) be an upper triangular judgment 

matrix. After adding a new element, A = (an) n+1xn+1 • If the 

elements of the ith row and the kth row satisfy akj 

(j=1,2,...,n), and at least there is an inequality which holds, and 

the new judgment satisfies ai n+1 
> ak n+1 4then the relative of 

importance of the ith element and the kth element does not charge. 

Proof: Follows from (18). 

Corollary 1 [3]. Under the conditions of Theorem 3.1, if 

ai n+ ak11.1, then the relative importance of the ith alternative1 

and the kth alternative does not change. 

a 

a 
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