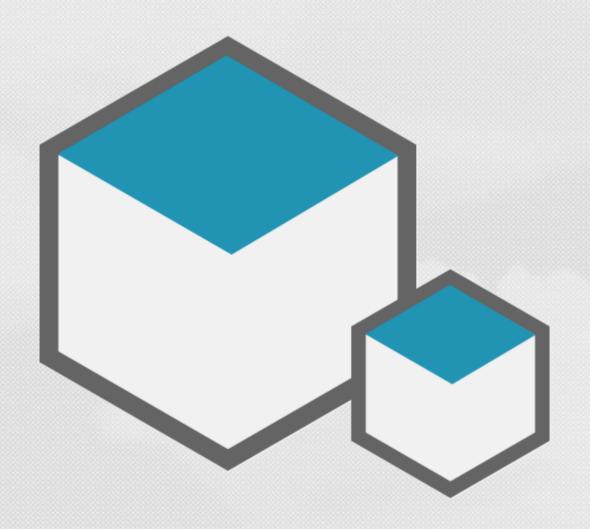


SELECTION OF MEDICAL WASTE TREATMENT CENTERS USING ANP

Xi Chen, Professor

School of Economics and Management, Xidian University, Xi'an, China


Xin Li, Graduate student

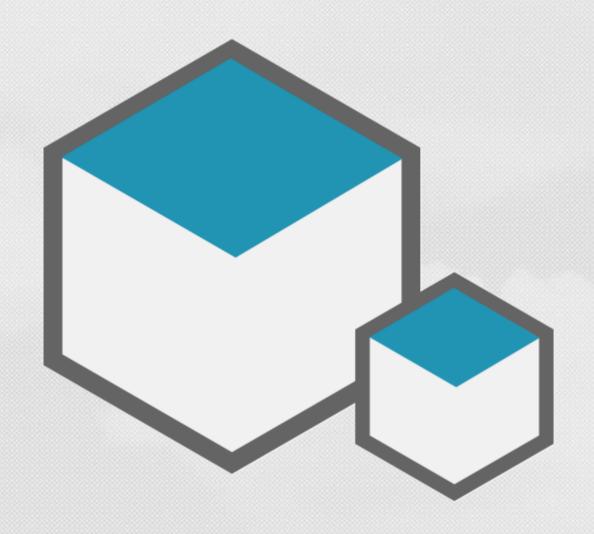
School of Economics and Management, Xidian University, Xi'an, China

Mujgan, Professor

Industrial Engineering Department, Eskisehir Osmangazi University, Eskisehir, Turkey

Introduction

Introduce the research background, point out the research motivation, establish the research problem, and analyze the significance of the research.


Methodology

Read literature, conduct field investigation, establish criteria system, analyze criteria correlation, and establish network hierarchy structure for medical waste treatment centers selection, analyze and solve.

Conclusion

Introduction

Introduce the research background, point out the research motivation, establish the research problem, and analyze the significance of the research.

Methodology

Read literature, conduct field investigation, establish criteria system, analyze criteria correlation, and establish network hierarchy structure for medical waste treatment centers selection, analyze and solve.

Conclusion

Introduction

A global crisis

The WHO (World Health Organization) has declared the outbreak of COVID-19 to be the sixth global public health emergency to date and a global crisis if left unchecked.

Transmission is fast

COVID-19 is highly infectious and has a wide range of the transmission route, so the daily protection must be taken.

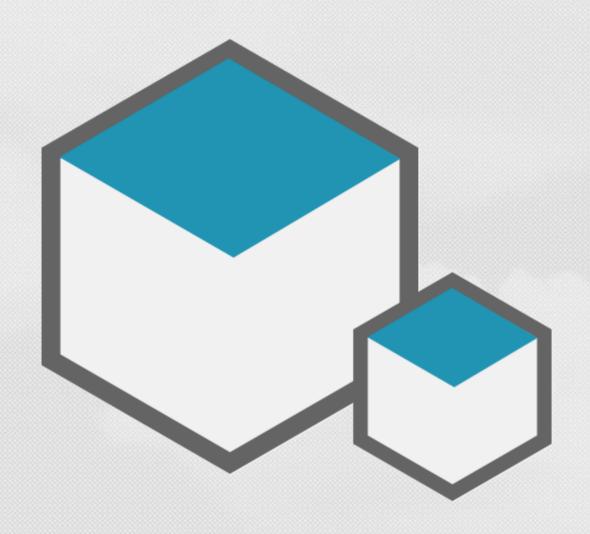
A surge in confirmed cases

Outbreaks usually lead to a sharp increase in infections within a short period of time, putting medical resources under extreme pressure.

A large amount of waste

During the prevention, control and treatment of COVID-19, a large amount of infectious medical waste (IMW) is generated, such as masks, disposable needles, nucleic acid testing waste, etc. A large amount of IMW is produced every day, which brings pressure to the medical waste treatment centers (MWTCs).

Introduction



Choosing a suitable medical waste treatment center can reduce the probability of infection risk.

This paper presents an evaluation model based on ANP, and establishes a universal risk evaluation method system for MWTCs. To minimize the risk, the ANP method was used to select and rank MWTCs.

Introduction

Introduce the research background, point out the research motivation, establish the research problem, and analyze the significance of the research.

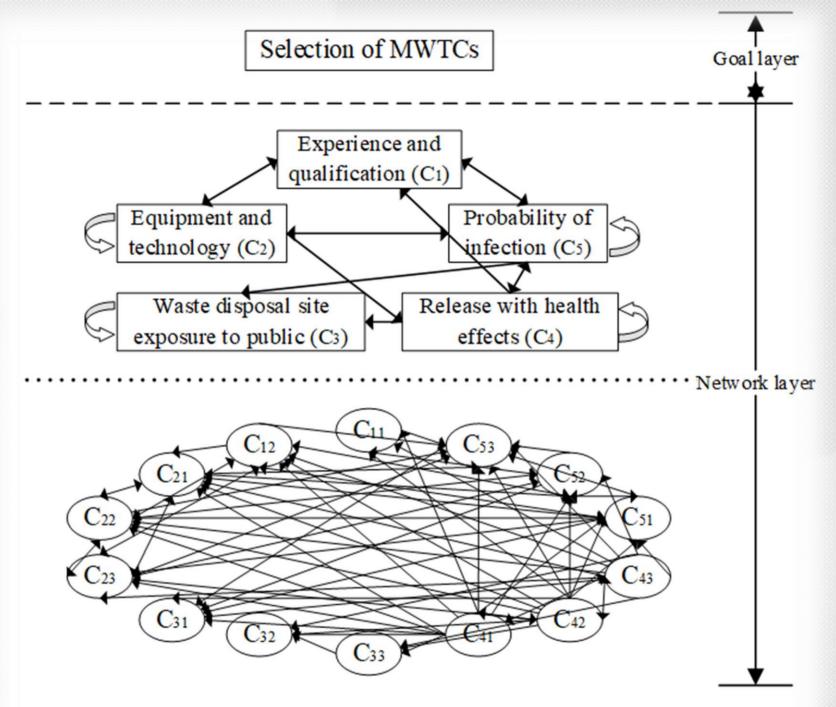
Methodology

Read literature, conduct field investigation, establish criteria system, analyze criteria correlation, and establish network hierarchy structure for medical waste treatment centers selection, analyze and solve.

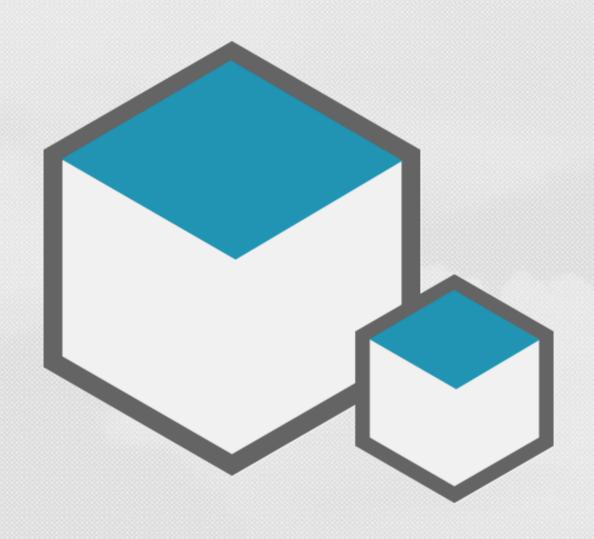
Conclusion

Criteria	Sub-criteria	Explanation of criteria				
Experience and	Technical level of operators (C_{11})	Operator's historical experience and technical				
qualification (C_1)		capability				
	Quality of treatment facilities (C_{12})	Treatment facilities correspond with standards				
Equipment and	Configuration completeness of	Treatment facilities are capable of handling all				
technology (C_2)	treatment facilities (C_{21})	types of medical waste				
	Automation control level (C_{22})	Level of automation of equipment				
	Disposal facilities operability (C_{23})	Handling facilities are easy to operate				
Waste disposal site	Area covered (C_{31})	The area specialized to a MWTC				
exposure to public	Instance from urban area (C_{32})	Distance of MWTCs from the urban				
(C_3)	Road conditions (C ₃₃)	Traffic flow, accident rate, etc				

Criteria	Sub-criteria	Explanation of criteria				
Release with health	Risk of producing poisonous	Produce poisonous and harmful pollutants ris				
effects (C_4)	and harmful pollutants (C_{41})					
	Environmental impact risk (C_{42})	Pollutants release impact to ecological				
		environment				
	Personnel impact risk (C ₄₃)	Pollutants release impact to contact people				
Probability of	Suitability of disposal facilities (C_{51})	Matching of treatment equipment to waste				
infection (C_5)		type				
	Security protection measures	Whether the security measures are adequate				
	deployment level (C_{52})					
	Supervision means reliability (C_{53})	Whether the local supervision is strict				



Carla and				
Sub-CI	nerion	associat	ion ta	ore


	C ₁₁	C ₁₂	C ₂₁	C_{22}	C ₂₃	C ₃₁	C ₃₂	C ₃₃	C ₄₁	C_{42}	C ₄₃	C ₅₁	C ₅₂	C ₅₃
C ₁₁									$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	
C_{12}				$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
C_{21}		$\sqrt{}$		$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
C_{22}		$\sqrt{}$	$\sqrt{}$		$\sqrt{}$				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
C_{23}		$\sqrt{}$	$\sqrt{}$	$\sqrt{}$					$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	
C ₃₁									$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	$\sqrt{}$
C_{32}								$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
C_{33}									$\sqrt{}$	$\sqrt{}$	$\sqrt{}$			
C_{41}										$\sqrt{}$	$\sqrt{}$			
C_{42}									$\sqrt{}$		$\sqrt{}$			
C_{43}									$\sqrt{}$	$\sqrt{}$				
C ₅₁		$\sqrt{}$	\checkmark	\checkmark	$\sqrt{}$				\checkmark	$\sqrt{}$	$\sqrt{}$		$\sqrt{}$	
C_{52}	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$		
C_{53}	$\sqrt{}$	\checkmark	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$				$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	$\sqrt{}$	

The ANP network structure for selecting MWTCs

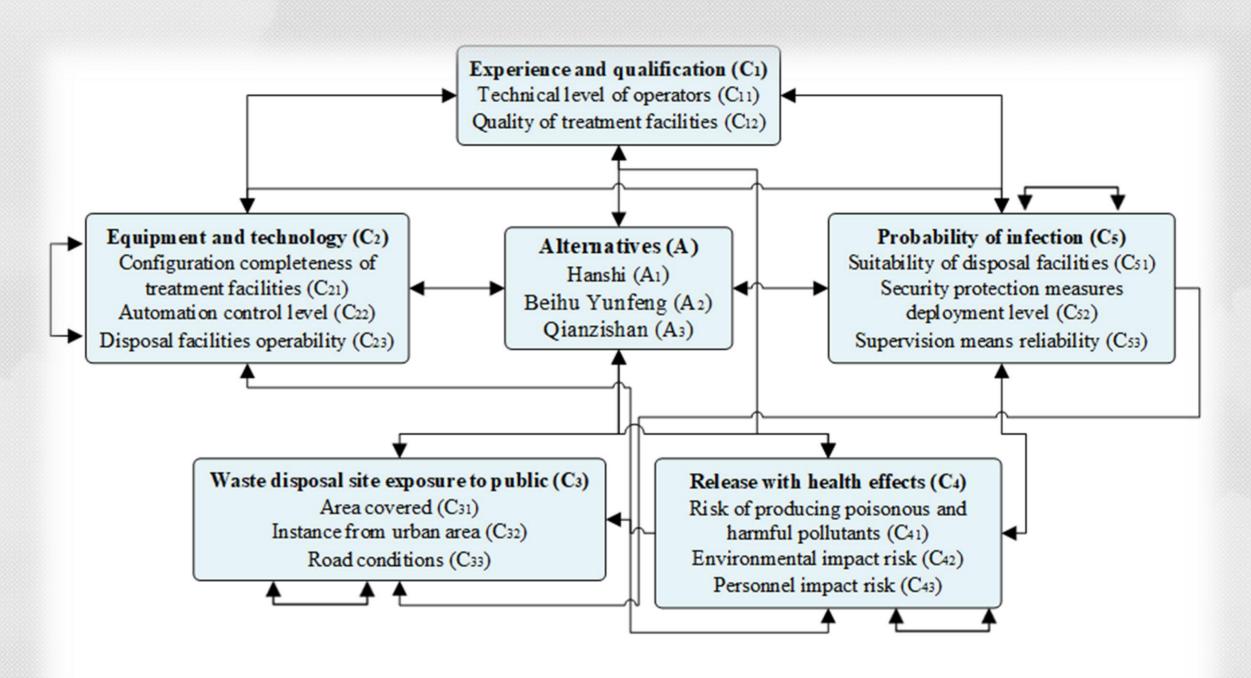
Introduction

Introduce the research background, point out the research motivation, establish the research problem, and analyze the significance of the research.

Methodology

Read literature, conduct field investigation, establish criteria system, analyze criteria correlation, and establish network hierarchy structure for medical waste treatment centers selection, analyze and solve.

Conclusion

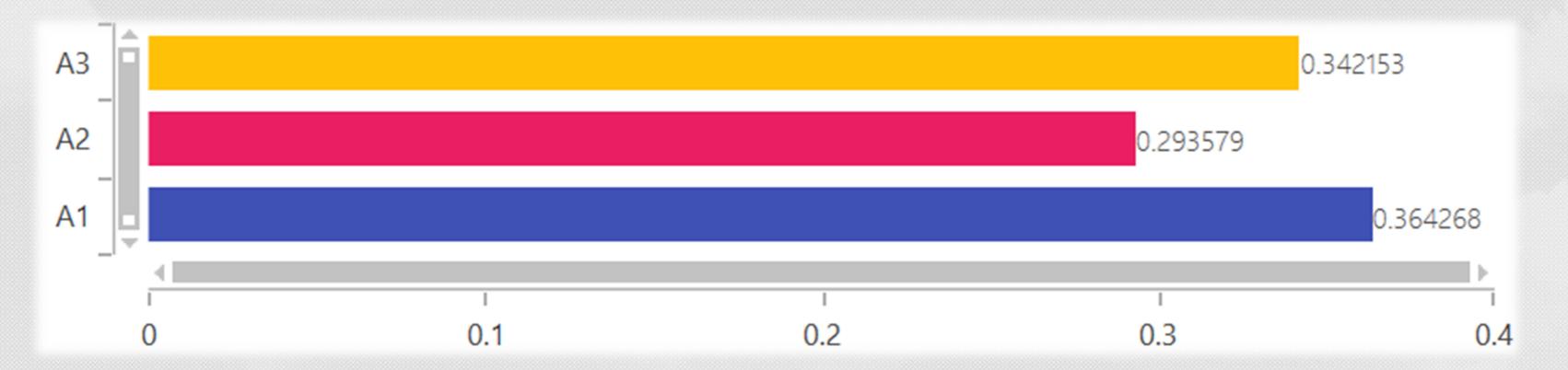


Conclusion

We selected three typical MWTCs in Wuhan, namely, Hanshi, Beihu Yunfeng and Qianzishan.

According to the established evaluation criteria system, the final ANP structure diagram of MWTCs selection can be obtained.

The structure diagram of ANP method in MWTCs selection


Conclusion

Experts use 1 ~ 9 score method to get pairwise comparison matrix, and then solve to get the result.

A1(0.364268)>A3(0.342153)>A2(0.293579)

Hanshi>Qianzishan>Beihu Yunfeng

Conclusion

- The selected criteria are limited to risks and not perfect enough. The follow-up can refer to the BOCR (benefit-opportunity-cost-risk) model proposed by Saaty for further development.
- In this paper, only one expert is considered, the information is not completely reliable, so group decision making can be considered in the future.

International Symposium on Analytic Hierarchy Process 2020

Thank You!

Xi Chen, Professor

School of Economics and Management, Xidian University, Xi'an, China

Xin Li, Graduate student

School of Economics and Management, Xidian University, Xi'an, China

Mujgan, Professor

Industrial Engineering Department, Eskisehir Osmangazi University, Eskisehir, Turkey