Classification reliability for GIS-MCDA: AHP and sensitivity analysis

Ileana Grave, Víctor Hernández-Díaz, Fidel Serrano-Candela, Tatiana Merino-Benítez, Yosune Miquelajauregui, Luis A. Bojórquez-Tapia,

ISAHP, Dec 3-6, 2020

Laboratorio Nacional de Ciencias de la Sostenibilidad

• This work proposes a systematic method to

Objective

- (1) select a classification scheme with spatial meaning and to
- (2) quantify the accuracy of the most sensitive layers, based on a sensitivity analysis (Triantaphyllou and Sánchez, 1997)
- The approach is illustrated through the case of study of coastal vulnerability mapping in Yucatán, México

- Classification implies a set of abstractions and subjective reasoning involved in the selection of the most meaningful spatial representations
- Linguistic uncertainty in mapping arises as an outcome of map categories that not only have imprecise meanings but also there meaning is context dependent
- Linguistic uncertainty is particularly important in the context of face to face decision-making processes (Carey and Burgman, 2008).

- 1. Vulnerability index calculation
- 2. Classification. This step entails producing alternative classification schemes that may include different number of categories and different category cuts
- 3. Sensitivity analysis for each category
 - a) Threshold value test
 - b) Feasibility range
 - c) Sensitivity coefficient
- 4. Fine tuning sensitivity analysis for the most sensitive attributes

For each basic unit of observation k (i.e., polygon or pixel):

$$V_i^k = \sum_j^J w_{ij} \, x_{ij}^k$$

where

w is the weight of attribute jx is the standardized score

a) Considering the **mean value**, $\bar{V_i}^c$, of all the spatial units in **each category**, c, the **change** in value of a normalized attribute to be included in another category $\bar{V_i}^{c\rho}$ is obtained as

$$\overline{\tau}_{ij}^c = \frac{\overline{V_i^c} - \overline{V_i^c}_{\rho}}{w_{ij}} \qquad c_{\rho} \in C = \{c_1, \dots, c_n\}$$

where w is the weight of attribute j.

* Based on the work by Triantaphyllou (Triantaphyllou and Sánchez, 1997)

b) The **feasibility range** of category switching, in terms of mean normalized score of each land attribute, \bar{x}_{ij}^c is given by

$$\bar{x}_{ij}^c - 1 \le \bar{\tau}_{ij}^c \le \bar{x}_{ij}^c,$$

for attribute *j*, and category *c*.

c) The **sensitivity coefficient** is calculated by

$$s_{ij}^c = \frac{1}{\overline{|\tau_{ij}^c|}}$$

- 4. Sensitivity analysis for the most sensitive attributes.
 - a) The category with the highest sensitivity coefficient $c^* \in C$ is identified and then is used as input for the sensitivity analysis. For each unit of observation, k, contained in c^*

$$\tau_{ij}^k = \frac{V_i^k - V_i^{\ k_\rho}}{w_{ij}}$$

where the reference value $V_i^{\kappa_{\rho}}$ is taken as the minimum value of the reference class, c^{ρ} .

b) The confusion matrix between the categories c^* and c^{ρ} is used to estimate the errors of omission and commission.

Case of study: Coastal vulnerability index for Yucatán, México

The AHP was applied to generate vulnerability indices for the three components of vulnerability: exposure, sensitivity and resilience

AHP model for exposure to hurricanes

5 categories

Progression factor	<u>.</u>	Number of pixels				
1.2		44660	0.207	0 747	0.050	0.075
1.3	LOW	44668	0.307	0.717	0.658	0.675
	Medium	14126	0.717	0.84	0.777	0.776
	High	38870	0.84	1	0.950	0.968
1.5	Low	7000	0.307	0.615	0.589	0.598
	Medium	43917	0.615	0.769	0.681	0.68
	High	46747	0.769	1	0.926	0.948
1.7	Low	521	0.307	0.546	0.522	0.53
	Medium	43793	0.547	0.714	0.659	0.675
	High	53350	0.714	1	0.903	0.928
2	Low	26	0.307	0.479	0.431	0.455
	Medium	14454	0.481	0.653	0.613	0.616
	High	83184	0.653	1	0.823	0.817

The sensitivity test was applied in order to consider the switching between categories:

low and high and medium and high

	Category switching			Attribute			
Progression			Aquatic	Distance to	Distance		Distance
factor			Aquatic	mangroup	to	Elevation	to
	From	to	vegetation	mangrove	dune		coastline
1.3	Low	High	NF	1.079	NF	NF	NF
	Medium	High	NF	1.821	NF	NF	NF
	High	Low	NF	NF	NF	1.490	NF
	High	Medium	NF	1.821	NF	2.513	NF
1.5	Low	High	NF	NF	NF	NF	NF
	Medium	High	NF	1.285	NF	NF	NF
	High	Low	NF	NF	NF	1.290	NF
	High	Medium	NF	1.285	NF	1.776	NF

	Category switching			ttribute			
Progression			Aquatic	Distance to	Distance		Distance
factor			vogotation	mangrove	to	Elevation	to
	From	to	vegetation		dune		coastline
1.3	Low	High	NF	1.070	NF	NF	NF
	Medium	High	NF	1.821	NF	NF	NF
	High	Low	NF	NF	NF	1.490	NF
	High	Medium	NF	1.821	NF	2.513	NF
1.5	Low/	⊔igh	NE		NF	NF	NF
	Medium	High	NF	1.285	NF	NF	NF
	High	Low	NF	NF	NF	1.290	NF
	High	Medium	NF	1.285	NF	1.776	NF

Reference class

Sensitivity coefficient

- The linguistic uncertainty inherent to the participatory workshop was addressed by applying sensitivity analysis to the land classifications.
- Results proved to be useful to the stakeholders in identifying the classification scheme that best conveyed the coastal zone's differential exposure to hurricanes.
- Even though the approach presented here was applied to vulnerability indicators, it can be implemented to any AHP-based GIS-MCDA to
 - (1) identify how measurement errors of land attributes affect the classification of maps, and

(2) select the nominal map that conveys the best representation of a geographic phenomenon

This work was supported by UNAM PAPIIT-IV100118;

- ASU-UNAM Binational Laboratory of Sustainability, Vulnerability, and Adaptation to Climate Change; FOMIX YUC-2018-04-01-88958;
- TMB acknowledges UNAM's Posgrado en Ciencias de la Sostenibilidad and the support of CONACYT-1003060.

Bojórquez-Tapia, L. A., Cruz-Bello, G. M., & Luna-González, L. (2013). Connotative land degradation mapping: A knowledge-based approach to land degradation assessment. *Environmental Modelling and Software, 40,* 51-64.

Bojórquez-Tapia, L.A., Cruz-Bello, G.M., Luna-González, L., Juárez, L., Ortiz-Pérez, M.A., 2009. V-DRASTIC: Using visualization to engage policymakers in groundwater vulnerability assessment. J. Hydrol. 373, 242–255.

Carey, J. M., & Burgman, M. A. (2008). Linguistic uncertainty in qualitative risk analysis and how to minimize it. Annals of the New York Academy of Sciences, 1128(1), 13-17.

Triantaphyllou, E., & Sánchez, A. (1997). A Sensitivity Analysis Approach for Some Deterministic Multi-Criteria Decision-Making Methods. *Decision Sciences*, 28(1), 151–194.